TOPICS
1. Chemistry – The Periodic Table, Bonding, Chemical reactions, Rate of reaction
2. Evolution – Geological Time, Natural selection, Evolution
3. Global systems – Climate, Cycles

LEARNING OUTCOMES

Students should be able to:

- investigate how human activity affects global systems
- model a cycle, such as the water, carbon, nitrogen or phosphorus cycle within the biosphere
- explain the causes and effects of the greenhouse effect
- investigate the effect of climate change on sea levels and biodiversity
- consider the long term effects of loss of biodiversity
- investigate currently occurring changes to permafrost and sea ice and the impacts of these changes
- examine the factors that drive the deep ocean currents, their role in regulating global climate, and their effects on marine life
- consider the role of science in identifying and explaining the causes of climate change
- consider the scientific knowledge used in discussions relate to climate change
- investigate the use and control of CFCs based on scientific studies of atmospheric ozone
- recognise that elements in the same group of the periodic table have similar properties
- describe the structure of atoms in terms of electron shells
- explain how the electronic structure of an atom determines its position in the periodic table and its properties
- investigate the chemical activity of metals
- predict the products of different types of simple chemical reactions
- use word or symbol equations to represent chemical reactions
- investigate the effect of a range of factors, such as temperature and catalysts, on the rate of chemical reactions
- investigate the development of the periodic table and how this was dependent on experimental evidence at the time
- identifying the potential hazards of chemicals used in experimental investigations
- outline processes involved in natural selection including variation, isolation and selection
- describe biodiversity as a function of evolution
- investigate changes caused by natural selection in a particular population as a result of a specified selection pressure such as artificial selection in breeding for desired characteristics
- relate genetic characteristics to survival and reproductive rates
- evaluate and interpret evidence for evolution, including the fossil record, chemical and anatomical similarities, and geographical distribution of species
- consider the role of different sources of evidence including biochemical, anatomical and fossil evidence for evolution by natural selection
WORK REQUIREMENTS

1. **Investigation: 10%**
 Based on Global systems- research

2. **Laboratory practicals: 15%**
 An overall mark is allocated based on the assessment of practical reports.

3. **Topic Tests: 45% (3 x 15%)**

4. **Examination: 30%**

TIMELINE

<table>
<thead>
<tr>
<th>Term 1</th>
<th>Term 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks 1 – 4: Global systems</td>
<td>Weeks 1 – 2: Chemistry 2 continued</td>
</tr>
<tr>
<td>Chapter 6- Global systems</td>
<td>Weeks 2: Chemistry Test</td>
</tr>
<tr>
<td>Week 4- Investigation</td>
<td>Weeks 3 – 7: Evolution</td>
</tr>
<tr>
<td>Week 5- Global Systems Test</td>
<td>Weeks 7: Evolution Test</td>
</tr>
<tr>
<td>Week 6- Global Investigation due</td>
<td>Weeks 8: Exam revision</td>
</tr>
<tr>
<td>Weeks 5 - 8: Chemistry 1</td>
<td>Weeks 8&9: Exams</td>
</tr>
<tr>
<td>Chapter 4- the Periodic table</td>
<td></td>
</tr>
<tr>
<td>Weeks 9-10: Chemistry 2</td>
<td></td>
</tr>
<tr>
<td>Chapter 5- Chemical Reactions</td>
<td></td>
</tr>
</tbody>
</table>